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Abstract
We studied the transition between the antiferromagnetic and the surface
spin–flop phases of a uniaxial antiferromagnetic [Fe(14 Å)/Cr(11 Å)]x20

superlattice. For external fields applied parallel to the in-plane easy axis,
the layer-by-layer configuration, calculated in the framework of a mean-field
one-dimensional model, was benchmarked against published polarized neutron
reflectivity data. For an in-plane field H applied at an angle ψ �= 0◦ to the
easy axis, magnetometry shows that the magnetization M vanishes at H = 0,
then increases slowly with increasing H . At a critical value of H , a finite jump
in M(H ) is observed for ψ < 5◦, while a smooth increase of M versus H is
found for ψ > 5◦. A dramatic increase in the full width at half maximum of the
magnetic susceptibility is observed for ψ � 5◦. The phase diagram obtained
from micromagnetic calculations displays a first-order transition to a surface
spin–flop phase for low ψ values, while the transition becomes continuous for
ψ greater than a critical angle, ψmax ≈ 4.75◦. This is in fair agreement with the
experimentally observed results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that when a magnetic field applied along the easy axis of a uniaxial

antiferromagnet exceeds a critical value HBSF =
√

2HEHA + H 2
A, where HE is the exchange
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field and HA is the anisotropy field, the system undergoes a first-order phase transition to a
bulk spin–flop (BSF) phase, characterized by sublattice magnetizations nearly perpendicular to
the field direction [1, 2]. In the case of a uniaxial antiferromagnet with one or two surfaces,
which break the translational invariance in the direction perpendicular to the surface plane,
the problem of determining the ground-state spin configuration in the presence of an external
magnetic field applied along the in-plane easy axis was theoretically posed a few decades ago.
The first model to be investigated was that of a semi-infinite stack of ferromagnetic planes,
antiferromagnetically coupled and subject to a magnetic field antiparallel to the magnetization
of the surface plane. For this system, when the ratio r between HA and HE is very small
(r = HA/HE � 1), the onset of a surface spin–flop (SSF) phase was predicted using a
continuum approximation [3, 4]. This phase is characterized by a canting near the surface and

is stable for field values H greater than a critical value HSSF =
√

HEHA + H 2
A ≈ HBSF/

√
2.

Nearly a decade ago, the existence of such a surface spin–flop phase was criticized [5, 6]
because a discrete, nonlinear map approach showed that the instability of the antiferromagnetic
configuration at HSSF simply leads to an interchange of the two sublattices [5, 6]. Subsequently
Pokrovsky and Sinitsyn [7] showed that, for a semi-infinite film with r � 1, a quite similar
result can also be obtained in the continuum approximation, provided that appropriate boundary
conditions are assumed.

The case of a finite stack with an even number N of planes (but still r � 1) is quite
different since, for HSSF < H < HBSF, the system tends to realize an inhomogeneous
configuration with the magnetizations of both surfaces parallel to the field direction, and a
domain wall is thus located in the centre of the stack. For H > HBSF the stable state of the
finite film is a different inhomogeneous configuration, with the inner spins assuming nearly
the bulk spin–flop configuration and the surface ones less deviated with respect to the field
direction [6].

Fullerton et al [8] showed that the Fe/Cr(211) superlattice, obtained by the repetition of N
ferromagnetic iron layers antiferromagnetically coupled through the Cr spacer, constitutes an
excellent model system of a finite uniaxial antiferromagnetic film. Since then, a great number of
papers [9–18] and [19]5 have been devoted to the study of the surface spin–flop phase transition.
In fact, for sufficiently low thickness of the Fe layers, the system possesses a dominant uniaxial
in-plane anisotropy along the Fe[01̄1] direction, with HA of the same order of magnitude as
HE. For example, the Fe/Cr(211) superlattice [9] with thickness tFe = 40 Å and tCr = 11 Å
had an anisotropy-to-exchange ratio r = HA/HE ≈ 1/4, while for the system investigated in
the present work and in [15], with tFe = 14 Å and tCr = 11 Å, one has r ≈ 1/10. This is a
major difference with respect to ordinary antiferromagnets, like MnF2, where r is usually much
smaller (r ≈ 1/100). The consequence of an increased value of r in superlattices with respect
to bulk antiferromagnets was investigated both experimentally [9] and theoretically [10, 11]
in Fe/Cr(211) superlattices with r ≈ 1/4, and was found to introduce a sequence of sudden
jumps in the field dependence of the magnetization, in addition to the surface spin–flop jump
occurring at HSSF.

Recently, an accurate and systematic study of the phase diagram of a uniaxial
antiferromagnetic film with an even number of planes was performed by Rößler and
Bogdanov [19] using an efficient conjugate gradient minimization technique in the case of
the external magnetic field applied precisely along the easy axis. For r � 1, they found
that there is only a first-order transition from the collinear antiferromagnetic (AF) phase to a

5 We note that for N � 4 the relationship between their notations and ours is the following: HE = 2J and HA = K ,
so that the ratio r = HA/HE ≈ 0.1 corresponds to K/J ≈ 0.2 in the phase diagram of the film (e.g. reported in
figure 6 of their preprint for the case N = 12).
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symmetric, inhomogeneously flopped phase with the spin–flop (SF) located in the centre of
the film. For r � 1, their calculations of the spin configuration confirmed previous theoretical
findings [9, 11, 12]. In fact they found a series of canted, asymmetric phases (Ci), separated by
first-order transition lines, between the AF and the SF phases [19]. Within these intermediate
C phases, the ground state of the system evolves from a canted configuration with a flop
localized near one of the surfaces (C1) to other configurations (C2,C3, . . .) where the flop
moves into the centre, causing abrupt variations of the magnetization as the field intensity is
increased [11, 19]. Finally, upon further increasing the anisotropy (r > 1), they found that
only first-order transitions between collinear (antiferro-, ferri- and ferromagnetic) states are
possible [19].

While the magnetic phase diagram of the finite AF film has been extensively investigated
both theoretically and experimentally in the case of H applied parallel to the easy axis, no such
studies are known for the case for which H is applied in-plane along an arbitrary direction with
the easy axis. In the bulk case, the field-induced phase transition of a uniaxial antiferromagnet
in the presence of a skew field forming an angle ψ �= 0◦ with the easy axis was theoreti-
cally studied by Rohrer and Thomas [20] using a mean-field approach and then by Fisher et al
[21, 22]. Neglecting zero-point motion effects, they determined the equilibrium configurations
as a function of the skew field, and found that the phase boundary between the AF and the bulk
SF phase extends only to a maximum angle with respect to the easy axis, where it ends in critical
points. More precisely, they predicted the first-order SF transition to become continuous (i.e.,
of second order) for ψ greater than a critical angleψmax(bulk) = tan−1[HA/(2HE− HA)]. This
expression, first developed for a tetragonal system, was later found to be valid for an orthorhom-
bic system, when ψ is restricted to a plane comprising the easy and intermediate axes [23].

The small values of ψmax(bulk) in ordinary bulk antiferromagnets (amounting to a few
tenths of a degree) made the observation of the crossover from first to second order in the
transition difficult. Early results on MnF2 were, in this respect, only qualitative. More
direct evidence of the crossover character of the transition was provided by Butera et al
[24] by measuring the staggered magnetization of MnCl2·4H2O. However, the existence and
nature of a bicritical point was proven by measuring the critical magnetic scattering of a
number of systems, notably CuCl2·2H2O [25], CsMnBr3·2H2O [26], and the above-mentioned
MnCl2·4H2O. On intuitive grounds, one might expect that in Fe/Cr(211) superlattices, a similar
crossover effect in the order of the surface SF transition should be present and should be more
easily observable owing to the higher value of the ratio r = HA/HE (r ≈ 1/10 or more)
compared to ordinary bulk antiferromagnets like MnF2, where r ≈ 1/100.

The aim of the present paper is twofold: (i) to extend to the film (i.e., finite) case the
theoretical study of the magnetic phase diagram of a uniaxial antiferromagnet in a skew
field, and (ii) to provide experimental evidence that, in contrast to bulk antiferromagnets, in
the case of the [Fe(14 Å/Cr(11 Å)]x20 superlattice, the crossover in the order of the surface
SF transition with increasing skew field might be observed. Concerning the theoretical
analysis, in section 2 we present two different approaches, the nonlinear map method and the
Landau–Lifshitz–Gilbert micromagnetic simulation, for the ground-state and full hysteresis
calculations, respectively. In section 3 experimental results, obtained by different techniques,
are presented and discussed, both for H parallel to the easy axis (ψ = 0◦) and for a skew field
(ψ �= 0◦). Finally, conclusions are drawn in section 4.

2. Film model and theoretical framework

We consider a film made of an even number, N , of parallel ferromagnetic planes that are
antiferromagnetically coupled one to each other by a nearest-neighbour exchange interaction
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and subject to a uniaxial in-plane anisotropy. For thin magnetic layers, the magnetostatic
dipolar interaction is known to confine the spins to the film plane, so that, at equilibrium,
the spins are necessarily in-plane and the dipolar energy is zero. One can therefore characterize
the spin configuration of the i th plane by only one parameter, namely the angle φi that the
magnetization of the i th plane forms with the z axis (i.e., with the easy anisotropy axis) within
the film plane xz. A magnetic field H is applied in the film plane along a direction that forms
an angle ψ with z. At T = 0 K the energy density of the system takes the form

e = E/(gμBSN‖)

=
N∑

i=1

[HE cos(φi − φi−1)− HA cos2 φi − 2HZ cosφi − 2HX sinφi ], (1)

where N‖ denotes the number of spins within each film layer, and HZ = H cosψ , and
HX = H sinψ .

The equilibrium spin configurations can be obtained from (1) by φi -derivation (i =
1, . . . , N):

∂e

∂φi
= 0 = −HE sin(φi − φi−1)(1 − δ1,i)− HE sin(φi+1 − φi )(1 − δN,i )

+ 2HA sinφi cosφi + 2HZ sinφi − 2HX cosφi . (2)

In the present work, the ground state of the one-dimensional (1D) model (1) that
approximates the film has been determined using two different theoretical methods, namely
(i) an integration of the Landau–Lifshitz equation for the spin chain, introducing a damping
coefficient in order to reach the magnetic ground state (see section 2.1), and (ii) a reformulation
of equation (2), which provides the equilibrium conditions in terms of a nonlinear map with
opportune boundary conditions at the film surfaces (see section 2.2). A comparative discussion
of the two methods is made in section 2.3.

2.1. Spin configuration via integration of the Landau–Lifshitz–Gilbert equation

The Landau–Lifshitz–Gilbert (LLG) equation [27]

dM
dt

= −γ (M × Heff)+ (αG/Ms)

(
M × dM

dt

)
(3)

describes the physical path of the magnetic moment M in a field Heff. Here γ and αG

are the gyromagnetic ratio of the free electron spin and the Gilbert damping coefficient
respectively, Ms is the saturation magnetization, and Heff = −(1/Ms)(∂e/∂M) is the local
effective magnetic field. For thin magnetic layers, a large value of αG is appropriate because
the demagnetizing field confines the magnetic moment to the film plane, suppressing the
gyromagnetic precession and leaving an in-plane rotation of the moment towards the direction
of the local effective field. Thus, the integration of the LLG equation becomes a simple
relaxation of the magnetic moment along the energy gradient. In the numerical calculations,
we iteratively rotate spins that represent individual Fe layers by an amount proportional to the
torque M × (M × Heff) at each instant. Heff is then evaluated from the resulting configuration
and applied to the next iteration. Upon reaching convergence, the stability of the equilibrium is
tested by evaluating the eigenvalues of the stability matrix Mi j = ∂2e/(∂φi∂φ j) [10, 14]. All
eigenvalues of the stability matrix must be positive for the state to be stable. In the event of
an unstable equilibrium, the configuration {φi} is displaced by a random, small fraction along
the eigenvector direction for which the eigenvalue is negative, and the relaxation process starts
anew until the system reaches a stable local energy minimum.
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2.2. Determination of the energy minima via the nonlinear map method

A different approach for the determination of the ground state of the magnetic system described
by equation (1) was proposed some years ago [5, 6, 11]. It is based upon a reformulation of
the equilibrium conditions (2) of the magnetic film model in terms of a discrete nonlinear map,
where the film surfaces are introduced via opportune boundary conditions [28].

We start by introducing the new variable si = sin(φi − φi−1), so that the conditions for an
equilibrium spin configuration, equation (2), can be rewritten as a 2D nonlinear recursive map.
For 1 < i < N one has

si+1 = si − (HA/HE) sin(2φi )− 2(HZ/HE) sinφi + 2(HX/HE) cosφi ,

φi+1 = φi + sin−1(si+1).
(4)

The trajectories in (φ, s) space are associated with equilibrium configurations, while the fixed
points of the map correspond to uniform ground states of the infinite system and are second
order (i.e., they satisfy the relation (φn+2, sn+2) = (φn, sn)) owing to its AF nature. We denote
by (α, β) the ground-state configuration of the infinite system in the presence of a field of
arbitrary direction. The angles α and β that the magnetizations of the two sublattices form with
the easy axis can be determined by numerically solving the following problem of an extremum
in two dimensions:

∂e/∂α = 0 = HE sin(β − α)+ (HA/2) sin(2α)+ HZ sinα − HX cosα,

∂e/∂β = 0 = HE sin(α − β)+ (HA/2) sin(2β)+ HZ sinβ − HX cosβ.
(5)

From equation (5) it is readily found that the second-order fixed points of the map are
FP1 = (β, sin(β − α)) and FP2 = (α,−sin(β − α)). In order to study the map behaviour in
the proximity of the fixed points, it is useful to perform a linear stability analysis of the doubly
iterated map. It is worth noticing that energetically stable configurations (i.e., with a positive
definite Hessian) are associated with topologically unstable (i.e., hyperbolic) trajectories in
phase space. And, conversely, energetically unstable configurations are associated with
topologically stable (i.e., elliptic) trajectories in phase space [28].

At this point, the presence of the two surface planes, signalled by the terms with the
Kronecker δ in equation (2), is taken into account via opportune boundary conditions: i.e.,
we introduce two fictitious planes i = 0 and N + 1, so that we can assume the bulk equations,
(4), to be valid even for the surface planes i = 1 and N , provided that the following equations
are satisfied:

s1 = sin(φ1 − φ0) = 0

sN = sin(φN+1 − φN ) = 0.
(6)

In this way, among all trajectories obtained from the map equation (4), only those satisfying the
boundary conditions (6) represent equilibrium configurations of the film with a finite number
N of planes. In practice, the physical trajectories of the film must have two intersections with
the s = 0 line, separated by exactly N steps of the recursive mapping [5, 6, 11].

Using this nonlinear map method, one is able to numerically determine all the stationary
configurations of the film very rapidly and within machine precision. To find the ground state
among the various calculated equilibrium configurations, it is necessary first to perform a linear
stability analysis of the obtained solutions through the evaluation of the Hessian and then to
compare the energies of the different metastable states in order to choose the lowest energy
one.

2.3. Comparison of the two methods

By definition, the two theoretical methods described in sections 2.1 and 2.2 give the same
results for the field evolution of the ground state from the AF to the SF phase. For the sake of
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generality, a comparison between the two methods and a critical discussion of their respective
advantages and drawbacks will now be presented.

The nonlinear map method allows one to determine all the equilibrium configurations
of the film at zero temperature. Thus, comparing the energies of the various equilibrium
configurations, one can easily determine the ground state. However, in the presence of two
or more energetically equivalent ground states of different configurations, their knowledge
is not enough to predict when a given equilibrium state is abandoned in favour of another
equilibrium state as the intensity of the external field is varied. Such a process cannot be
simulated in the framework of the nonlinear map method, whereas, in the approach based
on the integration of the Landau–Lifshitz–Gilbert equation, the inclusion of the damping
coefficient allows the system to evolve towards a stable local energy minimum. It should be
noted that, in the framework of the latter method, the magnitude of perturbation applied during
the stability test (i.e., the fractional displacement of the configuration {φi} in the event of an
unstable equilibrium) may be crucial in determining which one of these states is eventually
reached.

In this regard, we note that the problem of the determination of the actual state of the
system may be nontrivial in the case of uniaxial anisotropy field and exchange field with
comparable intensities, r = HA/HE ≈ 1, as in Fe/Cr(211) superlattices for a suitable choice
of the layer thicknesses [9]. In fact the metastability region turns out to be strongly amplified
with respect to the case r � 1, and many metastable states with slightly different energies
may be present, so that a tiny increment in the value of H may cause an abrupt change in the
ground-state configuration [11, 16, 17]. Such a peculiar feature is usually signalled by a chaotic
aspect of the nonlinear map in the (φ, s) phase space [6, 11]. In the extreme case of r � 1,
fractal structures were predicted to appear both in the distribution of magnetic moments and in
the energy spectrum [29].

As regards the [Fe(14 Å)/Cr(11 Å)]x20 superlattice under study, in section 3 it will be
shown that this system is characterized by a moderate value of the anisotropy (r ≈ 1/10). As a
consequence, the metastable state to which the system eventually relaxes in the micromagnetic
calculations is not very sensitive to the magnitude of the perturbation applied during the
stability test, so long as it is reasonably small. Thus, owing to the low value of r , the two
theoretical methods were found to give quite similar results for the ground state of the Fe/Cr
superlattice. (For the sake of precision, the results reported in figure 1 were obtained by the
approach based upon the integration of the LLG equation, while those in figures 2, 6 and 7 were
obtained via the nonlinear map method.)

Finally, it is worth observing that the theoretical results refer to the ground state, while
experiments (as described in section 3) are performed at room temperature Tamb. The influence
of a finite temperature on the spin–flop transition of a classical, simple cubic lattice, uniaxially
anisotropic Heisenberg antiferromagnet was investigated some time ago [21]. Roughly
speaking, comparing the T = 0 results with the experimental ones at Tamb is reasonable as long
as Tamb � Tb, the bicritical point where the AF and SF ordered phases meet in the (H, T ) phase
diagram. For the square lattice, recent work [30] indicated that a very narrow disordered phase
may intervene between the AF and the SF phase down to quite low temperatures, leading to the
definition of a tetracritical point Tt > Tb. In both the D = 3 and 2 cases, the multicritical point
in the (H, T ) phase diagram was found to be a substantial fraction of TN, the AF–paramagnetic
transition temperature for H = 0. The Fe/Cr superlattice under study cannot be described
by either of the two aforementioned models, since it is made of strongly ferromagnetic iron
films, antiferromagnetically coupled through the chromium spacer. However, denoting by Tmc

the multicritical point in the (H, T ) phase diagram, one can expect Tmc � TN also in the
superlattice case. In fact, on the basis of a mean-field theory estimate, TN is expected to be
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Figure 1. Calculated field dependence of the reduced magnetization, m(H ) = M/Ms , and reduced
energy e(H ), given by equation (1), of an antiferromagnetic film with N = 20 planes, for H in the
neighbourhood of the surface spin–flop transition. The field is applied along the easy axis (ψ = 0◦);
the exchange field and the anisotropy field are, respectively, HE = 9.80 kOe and HA = 0.98 kOe.
The thick (thin) line refers to increasing (decreasing) magnetic field. The field of thermodynamic
equivalence between the energies of the collinear AF and the non-uniform SSF configuration is
Hth = 3.02 kOe. The collinear AF state is stable for H < Hsup = 3.26 kOe; the non-uniform SSF
state is stable for H > Hinf = 2.93 kOe; they have the same energy at Hth.

much greater than Tamb for the Fe/Cr superlattice, so that one can guess also the condition
Tamb � Tmc to be satisfied.

3. Experimental results

3.1. Sample characterization

The preparation and characterization of epitaxial Fe/Cr superlattices are similar to those
described in [8]. The [Fe(14 Å)/Cr(11 Å)]x20 superlattice was prepared [15] by dc magnetron
sputtering onto a single-crystal MgO(110) substrate. To ensure epitaxy with the substrate, a
200 Å buffer layer of Cr was first deposited at 400 ◦C, then the superlattice was deposited
at 100 ◦C and found to grow with a (211) orientation. Finally, a 100 Å capping layer of
Cr was deposited to protect the sample. The epitaxy and the smoothness of the superlattice
were checked by x-ray diffraction and found to have an interfacial roughness of ≈4 Å.
Extensive magnetic characterizations were performed by means of magnetometry, as well as by
magnetoresistance measurements. For Fe film thickness tFe = 14 Å, a strong, in-plane surface
anisotropy KS = 0.06 ergs cm−2 was found to develop along the [01̄1] direction, leading to
a uniaxial in-plane anisotropy KU = 2KS/tFe = 8.6 × 105 ergs cm−3 (compared to the bulk
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a

b

c

d

e

Figure 2. ((a)–(d)) Comparison between the calculated layer-by-layer configuration (solid lines)
and the experimental ones (markers and dashed lines) deduced from polarized neutron reflectometry
data in a [Fe(14 Å)/Cr(11 Å)]x20 superlattice. The orientation φAF of the antiferromagnetic (AF)
axis (i.e., the axis along which the magnetizations of two adjacent Fe layers are antiparallel)
is plotted as a function of the Fe layer number for selected values of the reduced applied field
(h = H/HBSF); (e) schematic drawing showing that φAF(i) = 1

2 [φ(i) + φ(i − 1)] − 90◦, where
φ(i) is the angle formed by the magnetization Mi of the i th Fe layer with the field direction. The
magnetic field is applied parallel to the easy axis (ψ = 0◦).

crystalline anisotropy K1 = 4.7 × 105 ergs cm−3). Using the value Ms = 1740 emu cm−3

of bulk Fe at T = 0 K, one obtains HA = 2KU/Ms = 985.2 Oe. The coupling between
ferromagnetic layers was found to oscillate as a function of the thickness of the Cr interlayer.
For tCr = 11 Å an AF exchange coupling with strength JAF = −1.194 ergs cm−2 was
estimated [8], leading to HE = 2|JAF|/(tFeMs) = 9802.9 Oe.

For the [Fe(14 Å)/Cr(11 Å)]x20 superlattice under study, previous SQUID measure-
ments [15] of M(H ) versus H , applied in-plane along the easy axis of the sample, showed
that M is zero for zero field. As H was increased, the instability of the AF phase was signalled
by a steep increase of M(H ) at HSSF ≈ 2.73 kOe. In this study, M was measured using a vi-
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brating sample magnetometer (VSM), in which the sample can be rotated so as that the in-plane
magnetic field is applied at any skew angle ψ with respect to the easy axis.

3.2. Spin configuration for H parallel to the easy axis (ψ = 0◦)

For H applied in-plane parallel to the easy axis (ψ = 0◦), the calculation of the ground-

state magnetization profiles shows that, in a limited field range near HSSF =
√

HE HA + H 2
A,

the system admits two stationary configurations: the AF state, with collinear and antiparallel
layer magnetizations, and the surface spin–flop (SSF) state, with a non-uniform magnetization
profile characterized by a Bloch wall that nucleates near one of the film surfaces. In figure 1
we plot, in the neighbourhood of HSSF, the field dependence of the reduced magnetization,
m(H ) = M/Ms = (1/N)

∑N
i=1 cosφi(H ), and of the reduced energy e(H ), given by

equation (1). Using for the calculations HE = 9.80 kOe, HA = 0.98 kOe, N = 20 and
ψ = 0◦, the field of thermodynamic equivalence between the AF and the SSF state is found
to be Hth = H (eAF = eSSF) = 3.02 kOe, while the boundaries of the metastability region are
given by the fields Hinf = 2.93 kOe and Hsup = HSSF = 3.26 kOe. The AF state is the ground
state for H < Hth and is metastable for Hth < H < Hsup, while the SSF state is the ground
state for H > Hth and is metastable for Hinf < H < Hth. The calculated value of the bulk SF

field is HBSF =
√

2HE HA + H 2
A = 4.50 kOe.

In figures 2(a)–(d) the calculated ground-state magnetization profiles are compared with
those obtained from polarized neutron reflectivity measurements, as published in [15], at
different field values, ranging between 0 and 5.5 kOe. The fields h = H/HBSF were scaled
with respect to the bulk SF field, where we set HBSF = 4.50 kOe for the theoretical results and
HBSF ≈ 4.14 kOe for the experimental ones. The orientation φAF(i) of the antiferromagnetic
axis (i.e., the axis along which the magnetizations of two Fe adjacent layers are antiparallel) is
plotted as a function of the Fe layer number for selected values of the applied field. Figure 2(e)
illustrates that φAF(i) = 1

2 [φ(i) + φ(i − 1)] − 90◦, where φ(i) is the angle formed by the
magnetization Mi of the i th Fe layer with the field direction. As the measured spectrum extends
only as far as the half-order AF Bragg peak, which is determined by the antiparallel components
of the magnetizations, the orientation φAF(i) of the AF axis is obtained with more accuracy
from the experiments than that of the individual layer orientations, for which the estimated error
is up to 20◦ [15]. This representation clearly depicts the position and extent of the domain wall
for the different fields and shows that agreement between theory and experiment is fairly good.

From figures 2(a)–(d) one sees that the basic features of the SSF transition in this film,
characterized by a low value of r ≈ 1/10, are the following: (i) for H > HSSF the deviations
from the uniform AF spin configuration originate just at the surface layer whose magnetization
is antiparallel to the field; (ii) with increasing H , the surface-nucleated domain wall is pushed
gradually into the middle of the film; (iii) for H > HBSF a symmetric spin configuration is
achieved, similar to the bulk SF one in the middle planes (while the spins at the surfaces, owing
to the cuts of the exchange bonds, are less deviated from the field direction with respect to
the bulk ones). Although not directly obvious from figure 2, the discommensuration [12] at
the centre of the surface-nucleated domain wall, effectively dividing the AF order into two
antiphase domains, which was strongly evidenced by the neutron data [15], is also reproduced
by the calculations.

Note that no abrupt variations of the magnetization, except the one at HSSF, are found as
the field intensity is increased; see figure 1: i.e., additional first-order transitions between C
phases, intermediate between the AF and the SSF one [11, 19], are not allowed by the low
value of r = HA/HE in this system.
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Figure 3. Experimental VSM data for the magnetization M(H ) of a [Fe(14 Å)/Cr(11 Å)]x20
superlattice versus H , applied along a direction which forms a skew angle ψ with the easy in-plane
axis. The two different curves refer to ψ = 1◦ and 23◦, respectively.

3.3. Spin configuration for H applied along an arbitrary direction (ψ �= 0◦)

For a field applied in-plane along an arbitrary direction forming a skew angle ψ �= 0◦ with
the easy axis (i.e., both HX and HZ are non-zero), one has that M(H ) = 0 for H = 0.
For 0◦ < ψ < 5◦, M(H ) increases slowly with increasing H , since for ψ �= 0◦ the
magnetizations of the two sublattices are no longer compensated. Upon further increasing
H , a finite jump, signalling the onset of a first-order phase transition, was observed for a ψ-
dependent field value. The measurements were performed both upon increasing and decreasing
H , and showed a marked hysteresis for such small ψ values; see figure 3. The magnetic
susceptibility χ(H ) = dM/dH , obtained by numerically deriving the measured magnetization
with respect to H , showed sharp peaks corresponding to the jumps in M(H ); see figure 4, top.
The full width at half maximum (FWHM; see figure 5, top) of the measured susceptibility peak
was found to be constant and very small (essentially determined by the instrumental resolution),
signalling that for such small angle values (0◦ < ψ < 5◦) the SSF transition is of first order.

As ψ was gradually increased above 5◦, M(H ) became smoother (see figure 3), and the
peak in χ(H ) (see figure 4, bottom) decreased in intensity, while the FWHM dramatically
increased on passing from 5◦ to 23◦, as shown in figure 5, top. The latter feature strongly
suggests that a crossover of the surface phase transition from first order to second order might
take place for ψ � 5◦.

In the light of this interpretation, it is however necessary to justify the persistence—up
to the highest investigated value of ψ (23◦)—of a small hysteresis loop; see figure 5, bottom,
where the measured dependence of the peak position of the magnetic susceptibility χ(H ) is
shown as a function of the skew angle ψ , both for increasing (full circles) and decreasing (open
circles) magnetic field.

To this aim, we observe that the coexistence of first- and second-order transition features
was recently observed [31] in single-crystal La0.73Ca0.27MnO3 perovskites exhibiting colossal
magnetoresistance. The magnetization isotherms displayed a metamagnetic structure linked
with a first-order transition, while field- and temperature-dependent ac susceptibility data
presented a crossover line characteristic of a continuous transition [31].

In our case of a finite AF Fe/Cr(211) film, a similar effect, i.e., the coexistence of first- and
second-order transition features, might be attributed to a distribution of values of the interlayer
exchange, as well as of the anisotropy of the different layers in the stack, due to the presence of
thickness fluctuations. In determining the observed small hysteresis loop, one also cannot rule
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Figure 4. Experimental data for the magnetic susceptibility χ(H ) = dM/dH of a
[Fe(14 Å)/Cr(11 Å)]x20 superlattice, obtained by numerically deriving the VSM data in figure 3,
both for increasing field (thick line) and decreasing field (thin line). Top diagram: ψ = 1◦; bottom
diagram: ψ = 23◦. In each diagram, the arrow at the lower (higher) field denotes the peak position
for decreasing (increasing) H .

out the role of defects (pinning centres) which inhibit the lateral motion of domains during the
magnetization reversal process.

In the following we will test if the experimental data can be explained in terms of a
crossover from first- to second-order critical behaviour by performing a theoretical calculation
of the magnetization profile {φi; i = 1, . . . , N} for different values of H and ψ �= 0◦, using
either of the two methods described in section 2. In the present case where r � 1, the map
portrait is not chaotic and the two different methods give similar results. From the calculated
spin configuration, one obtains m(H ) = M/Ms = (1/N)

∑N
i=1 cosφi , χ(H ) = dM/dH and

e(H ), given by equation (1).
We find that for 0◦ < ψ < 4.75◦ the system admits two stationary configurations: a nearly

AF state and an SSF state. The first one is stable only for H < Hsup while the second one is
stable only for H > Hinf. By Hth we denote the field of thermodynamic equivalence at which
the two states take the same energy. As ψ increases, the width of the metastability region
gradually reduces until, for ψ > 4.75◦, only one equilibrium configuration is found.

In figure 6 the calculated susceptibility χ(H ) is shown for different values of the skew
angle ψ . For ψ � 3◦, the peak in χ(H ) is a Dirac delta function, so the peak position
is indicated by a vertical line. For ψ � 5◦ the peak has a finite width and a finite height.
As ψ increases, the peak broadens and its height decreases. For clarity’s sake, the peak
position reported in figure 6 for ψ � 3◦ corresponds to the calculated field of thermodynamic
equivalence Hth between the energies of the AF-like configuration and the non-uniform SSF
configuration. It is just the position of this peak that is reported versus ψ in figure 7 as the
full-circle diagram; the other two diagrams plotted for ψ � 4.75◦ represent the calculated field
values Hinf (open squares) and Hsup (open triangles) versus ψ .
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Figure 5. Top diagram: experimental peak intensity (open squares) and FWHM (full squares) of
the magnetic susceptibility χ(H ) of a [Fe(14 Å)/Cr(11 Å)]x20 superlattice versus the skew angle
ψ formed by the applied magnetic field with the easy in-plane axis. The lines are guides to the
eye. A dramatic increase in the FWHM is observed for |ψ | > 5◦. Bottom diagram: experimental
peak position of χ(H ) versusψ , both for increasing (full circles) and decreasing (open circles) field
intensity.

Figure 6. Calculated χ(H ) = dM/dH of an AF film with N = 20 and HE = 9.80 kOe,
HA = 0.98 kOe versus H applied in-plane along an arbitrary direction. The different curves refer
to different values of the skew angle ψ formed by the external magnetic field with the easy axis.
For ψ � 3◦, the position of the reported peak of χ(H ) is indicated by a vertical dashed line and
corresponds to the field of thermodynamic equivalence Hth between the energies of the AF-like and
the non-uniform SSF configuration.

In the phase diagram of figure 7 one clearly observes that, upon increasing ψ , the
width of the metastability region gradually shrinks until, for ψ greater than a critical value
ψmax(film) = 4.75◦, the film admits only one equilibrium state. Thus, for ψ � ψmax(film) we
expect the SSF transition to become continuous. The calculated value of ψmax(film) = 4.75◦
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Figure 7. Calculated phase diagram of an AF film with N = 20 and HE = 9.80 kOe,
HA = 0.98 kOe. The peak positions of χ(H ) = dM/dH , scaled with respect to HSSF, are reported
versus the skew angle ψ formed by the external magnetic field with the easy axis. For ψ > 4.75◦
the SSF transition is predicted to become continuous. The calculated field of thermodynamic
equivalence Hth is reported versus ψ as the full-circle diagram; the other two diagrams plotted
for ψ � 4.75◦ represent the calculated field values Hinf (open squares) and Hsup (open triangles).

turns out to be in remarkable agreement with the value ≈5◦ estimated from the experimental
results on the basis of the strong increase observed in the FWHM of χ(H ). This fact provides
support for the hypothesis of a crossover from first- to second-order critical behaviour for the
SSF transition in a skew field.

The calculated value of ψmax(film) = 4.75◦ should also be compared with its bulk
counterpart. In the bulk case, the field-induced phase transition of a uniaxial antiferromagnet
in the presence of a skew field forming an angle ψ with the easy axis was theoretically studied
by Rohrer and Thomas [20]. They predicted the first-order bulk SF transition to become
continuous for ψ � ψmax(bulk) = tan−1[HA/(2HE − HA)]. However, in MnF2, where
r ≈ 1/100, the critical angle turns out to be as small as ≈0.4◦. In the case of the Fe/Cr
superlattice under study, the ratio r is nearly an order of magnitude higher than in MnF2,
so that an appreciable critical angle ψmax(bulk) ≈ 3◦ is estimated. The calculated value
of ψmax(film) = 4.75◦ is nearly twice the bulk value. This can be qualitatively understood
considering that, for not too high values of r , in the bulk the critical angle is essentially
determined by the ratio HA/(2HE), while in the film the effective exchange field at the surface
is halved with respect to the bulk.

4. Discussion

In this work we have investigated the transition, induced by a magnetic field H with arbitrary
direction, between the antiferromagnetic phase and the surface spin–flop phase of an epitaxial
Fe/Cr(211) superlattice with tFe = 14 Å, tCr = 11 Å and N = 20 repetitions. The system is
characterized by a rather small value (r ≈ 1/10) of the ratio r = HA/HE between the uniaxial
anisotropy field HA and the exchange field HE, yet much greater than the value (r ≈ 1/100)
pertinent to usual bulk antiferromagnets like MnF2 and Cr2O3.

For an external field applied parallel to the easy in-plane axis (ψ = 0◦), the layer-by-
layer spin configurations measured by polarized neutron reflectometry were found to be in
remarkable agreement with theoretical calculations, performed in the framework of a mean-
field 1D model of the superlattice stack.

For a field applied in-plane along an arbitrary direction forming a skew angle ψ �= 0◦ with
the easy axis, the superlattice magnetization M(H ) was measured using magnetometry. The
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phase diagram of the film was calculated in order to check the possibility of a crossover of
the surface phase transition from first to second order to take place for ψmax(film), similarly to
what was predicted decades ago by Rohrer and Thomas [20] for an AF bulk system in a skew
field. Indeed we calculated ψmax(film) ≈ 4.75◦, to be compared with the experimental value,
ψ ≈ 5◦, at which the jump in M(H ) starts smoothening and the FWHM of the measured
magnetic susceptibility displays a dramatic increase with increasing ψ . Owing to the cut of
exchange bonds at the film surfaces, the calculated value of ψmax(film) turns out to be nearly
twice its bulk counterpart, ψmax(bulk) ≈ 3◦ [20]. The latter value is much higher than the ones
predicted for ordinary bulk antiferromagnets (e.g., ψmax(bulk) ≈ 0.4◦ for MnF2 and ≈0.015◦
for Cr2O3) [20].

From the comparison between our experimental and theoretical results we conclude that
a crossover between first- and second-order critical behaviour is easier to be observed by
magnetization measurements in Fe/Cr superlattices, thanks to the much higher value of the
ratio r = HA/HE between the anisotropy and the exchange fields in such an artificially grown
system with respect to ordinary bulk antiferromagnets.

The interpretation of the experimental data proposed above needs, however, further
investigation to be conclusive. In particular, a quantification of the magnetic domain structure in
the presence of a structurally rough interface is required. While our previously published [15]
polarized neutron reflectometry data proved unambiguously that only one type of domain is
present in Fe/Cr(211) superlattices with an interfacial roughness of ≈4 Å for zero field, such
clear-cut evidence is lacking in the case of a non-zero field, applied in plane along an arbitrary
direction. In conclusion, while we do not claim a quantitative accuracy for our theoretical
results, nevertheless we believe that the main features of the spin–flop transition in the Fe/Cr
superlattice have been captured by our ‘ideal’ model (i.e., characterized by structurally smooth
and uniformly magnetized layers).
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[18] Rößler U K and Bogdanov A N 2004 Phys. Rev. B 69 184420
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